70 research outputs found

    The anti-microbial peptide (Lin-SB056-1)2-K reduces pro-inflammatory cytokine release through interaction with Pseudomonas aeruginosa lipopolysaccharide

    Get PDF
    The ability of many anti-microbial peptides (AMPs) to modulate the host immune response has highlighted their possible therapeutic use to reduce uncontrolled inflammation during chronic infections. In the present study, we examined the anti-inflammatory potential of the semi-synthetic peptide lin-SB056-1 and its dendrimeric derivative (lin-SB056-1)2-K, which were previously found to have anti-microbial activity against Pseudomonas aeruginosa in in vivo-like models mimicking the challenging environment of chronically infected lungs (i.e., artificial sputum medium and 3-D lung mucosa model). The dendrimeric derivative exerted a stronger anti-inflammatory activity than its monomeric counterpart towards lung epithelial-and macrophage-cell lines stimulated with P. aeruginosa lipopolysaccharide (LPS), based on a marked decrease (up to 80%) in the LPS-induced production of different pro-inflammatory cytokines (i.e., IL-1β, IL-6 and IL-8). Accordingly, (lin-SB056-1)2-K exhibited a stronger LPS-binding affinity than its monomeric counterpart, thereby suggesting a role of peptide/LPS neutralizing interactions in the observed anti-inflammatory effect. Along with the anti-bacterial and anti-biofilm properties, the anti-inflammatory activity of (lin-SB056-1)2-K broadens its therapeutic potential in the context of chronic (biofilm-associated) infections

    Legionella pneumophila induces human beta Defensin-3 in pulmonary cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Legionella pneumophila </it>is an important causative agent of severe pneumonia in humans. Human alveolar epithelium and macrophages are effective barriers for inhaled microorganisms and actively participate in the initiation of innate host defense. The beta defensin-3 (hBD-3), an antimicrobial peptide is an important component of the innate immune response of the human lung. Therefore we hypothesize that hBD-3 might be important for immune defense towards <it>L. pneumophila</it>.</p> <p>Methods</p> <p>We investigated the effects of <it>L. pneumophila </it>and different TLR agonists on pulmonary cells in regard to hBD-3 expression by ELISA. Furthermore, siRNA-mediated inhibition of TLRs as well as chemical inhibition of potential downstream signaling molecules was used for functional analysis.</p> <p>Results</p> <p><it>L. pneumophila </it>induced release of hBD-3 in pulmonary epithelium and alveolar macrophages. A similar response was observed when epithelial cells were treated with different TLR agonists. Inhibition of TLR2, TLR5, and TLR9 expression led to a decreased hBD-3 expression. Furthermore expression of hBD-3 was mediated through a JNK dependent activation of AP-1 (c-Jun) but appeared to be independent of NF-κB. Additionally, we demonstrate that hBD-3 elicited a strong antimicrobial effect on <it>L. pneumophila </it>replication.</p> <p>Conclusions</p> <p>Taken together, human pulmonary cells produce hBD-3 upon <it>L. pneumophila </it>infection via a TLR-JNK-AP-1-dependent pathway which may contribute to an efficient innate immune defense.</p

    Oral Antimicrobial Peptides and Biological Control of Caries

    Get PDF
    The presence of antimicrobial peptides (AMPs) in saliva may be a biological factor that contributes to susceptibility or resistance to caries. This manuscript will review AMPs in saliva, consider their antimicrobial and immunomodulatory functions, and evaluate their potential role in the oral cavity for protection of the tooth surface as well as the oral mucosa. These AMPs are made in salivary gland and duct cells and have broad antimicrobial activity. Alpha-defensins and LL37 are also released by neutrophils into the gingival crevicular fluid. Both sources may account for their presence in saliva. A recent study in middle school children aimed to determine a possible correlation between caries prevalence in children and salivary concentrations of the antimicrobial peptides human beta-defensin-3 (hBD-3), the cathelicidin, LL37, and the alpha-defensins. The levels of these AMPs were highly variable in the population. While levels of LL37 and hBD-3 did not correlate with caries experience, the mean alpha-defensin level was significantly higher in children with no caries than in children with caries (p < 0.005). We conclude that several types of AMPs that may have a role in oral health are present in unstimulated saliva. Low salivary levels of alpha-defensin may represent a biological factor that contributes to caries susceptibility. Our observation could lead to new ways to prevent caries and to a new tool for caries risk assessment

    Understanding the roles of gingival beta-defensins

    Get PDF
    Gingival epithelium produces β-defensins, small cationic peptides, as part of its contribution to the innate host defense against the bacterial challenge that is constantly present in the oral cavity. Besides their functions in healthy gingival tissues, β-defensins are involved in the initiation and progression, as well as restriction of periodontal tissue destruction, by acting as antimicrobial, chemotactic, and anti-inflammatory agents. In this article, we review the common knowledge about β-defensins, coming from in vivo and in vitro monolayer studies, and present new aspects, based on the experience on three-dimensional organotypic culture models, to the important role of gingival β-defensins in homeostasis of the periodontium

    Serum Stabilities of Short Tryptophan- and Arginine-Rich Antimicrobial Peptide Analogs

    Get PDF
    Several short antimicrobial peptides that are rich in tryptophan and arginine residues were designed with a series of simple modifications such as end capping and cyclization. The two sets of hexapeptides are based on the Trp- and Arg-rich primary sequences from the "antimicrobial centre" of bovine lactoferricin as well as an antimicrobial sequence obtained through the screening of a hexapeptide combinatorial library.HPLC, mass spectrometry and antimicrobial assays were carried out to explore the consequences of the modifications on the serum stability and microbicidal activity of the peptides. The results show that C-terminal amidation increases the antimicrobial activity but that it makes little difference to its proteolytic degradation in human serum. On the other hand, N-terminal acetylation decreases the peptide activities but significantly increases their protease resistance. Peptide cyclization of the hexameric peptides was found to be highly effective for both serum stability and antimicrobial activity. However the two cyclization strategies employed have different effects, with disulfide cyclization resulting in more active peptides while backbone cyclization results in more proteolytically stable peptides. However, the benefit of backbone cyclization did not extend to longer 11-mer peptides derived from the same region of lactoferricin. Mass spectrometry data support the serum stability assay results and allowed us to determine preferred proteolysis sites in the peptides. Furthermore, isothermal titration calorimetry experiments showed that the peptides all had weak interactions with albumin, the most abundant protein in human serum.Taken together, the results provide insight into the behavior of the peptides in human serum and will therefore aid in advancing antimicrobial peptide design towards systemic applications

    Microbiologia endodontica

    No full text

    Malattie parodontali

    No full text

    Lung-Directed Bacteriotherapy in Cystic Fibrosis: Could It Be an Option?

    No full text
    Due to the alarming spread of bacterial resistance to conventional drugs, the sole use of antibiotics to fight lung infections in cystic fibrosis (CF) is not resolutive, and novel strategies to replace or complement the use of antibiotics are highly desirable. Among these strategies, the use of probiotics is emerging as a particularly attractive approach. Probiotic administration via the oral route has demonstrated an ability to improve lung function and to reduce infection and exacerbation rates in CF patients through mechanisms mainly attributable to the gut–lung axis. Nevertheless, some studies reported no beneficial effect of probiotic intake suggesting that there is margin for improvement of such innovative intervention in CF. The present review aims to address the rationale behind probiotic use in CF and discuss the hypothesis that nasal/aerosol administration of appropriate probiotic strains may help to exert a direct beneficial effect on the respiratory tract, increasing the effectiveness of probiotic interventions in CF patients

    Use of antimicrobial peptides against microbial biofilms: advantages and limits

    No full text
    The formation of surface-attached cellular agglomerates, the so-called biofilms, contributes significantly to bacterial resistance to antibiotics and innate host defenses. Bacterial biofilms are associated to various pathological conditions in humans such as cystic fibrosis, colonization of indwelling medical devices and dental plaque formation involved in caries and periodontitis. Over the last years, natural antimicrobial peptides (AMPs) have attracted considerable interest as a new class of antimicrobial drugs for a number of reasons. Among these, there are the broad activity spectrum, the relative selectivity towards their targets (microbial membranes), the rapid mechanism of action and, above all, the low frequency in selecting resistant strains. Since biofilm resistance to antibiotics is mainly due to the slow growth rate and low metabolic activity of bacteria in such community, the use of AMPs to inhibit biofilm formation could be potentially an attractive therapeutic approach. In fact, due to the prevalent mechanism of action of AMPs, which relies on their ability to permeabilize and/or to form pores within the cytoplasmic membranes, they have a high potential to act also on slow-growing or even non-growing bacteria. This review will highlight the most important findings obtained testing AMPs in in vitro and in vivo models of bacterial biofilms, pointing out the possible advantages and limits of their use against microbial biofilm-related infections
    corecore